Strain-induced phase transformation under compression in a diamond anvil cell: Simulations of a sample and gasket

نویسندگان

  • Biao Feng
  • Valery I. Levitas
  • Yanzhang Ma
چکیده

Combined high pressure phase transformations (PTs) and plastic flow in a sample within a gasket compressed in diamond anvil cell (DAC) are studied for the first time using finite element method. The key point is that phase transformations are modelled as strain-induced, which involves a completely different kinetic description than for traditional pressure-induced PTs. The model takes into account, contact sliding with Coulomb and plastic friction at the boundaries between the sample, gasket, and anvil. A comprehensive computational study of the effects of the kinetic parameter, ratio of the yield strengths of high and low-pressure phases and the gasket, sample radius, and initial thickness on the PTs and plastic flow is performed. A new sliding mechanism at the contact line between the sample, gasket, and anvil called extrusion-based pseudoslip is revealed, which plays an important part in producing high pressure. Strain-controlled kinetics explains why experimentally determined phase transformation pressure and kinetics (concentration of high pressure phase vs. pressure) differ for different geometries and properties of the gasket and the sample: they provide different plastic strain, which was not measured. Utilization of the gasket changes radial plastic flow toward the center of a sample, which leads to high quasi-homogeneous pressure for some geometries. For transformation to a stronger high pressure phase, plastic strain and concentration of a high-pressure phase are also quasi-homogeneous. This allowed us to suggest a method of determining strain-controlled kinetics from experimentation, which is not possible for weaker and equal-strength high-pressure phases and cases without a gasket. Some experimental phenomena are reproduced and interpreted. Developed methods and obtained results represent essential progress toward the understanding of PTs under compression in the DAC. This will allow one optimal design of experiments and conditions for synthesis of new high pressure phases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell

Combined plastic flow and strain-induced phase transformations (PTs) under high pressure in a sample within a gasket subjected to three dimensional compression and torsion in a rotational diamond anvil cell (RDAC) are studied using a finite element approach. The results are obtained for the weaker, equal-strength, and stronger high-pressure phases in comparison with low-pressure phases. It is f...

متن کامل

Coupled plastic flow and phase transformation under compression of materials in a diamond anvil cell: Effects of transformation kinetics and yield strength

The large-strain problem on phase transformations (PTs) under compression in a diamond anvil cell is studied in detail using the finite-element method. The combined effect of transformation kinetics and ratios of the yield strengths of lowand high-pressure phases is examined. Some experimental phenomena (e.g., plateaus in pressure distribution and plasticflow to the center of a sample) are repr...

متن کامل

Strain-induced phase transformations under compression, unloading, and reloading in a diamond anvil cell

Strain-induced phase transformations (PTs) in a sample under compression, unloading, and reloading in a diamond anvil cell are investigated in detail, by applying finite element method. In contrast to previous studies, the kinetic equation includes the pressure range in which both direct and reverse PTs occur simultaneously. Results are compared to the case when “no transformation” region in th...

متن کامل

Plastic flows and phase transformations in materials under compression in diamond anvil cell: Effect of contact sliding

Modeling of coupled plastic flows and strain-induced phase transformations (PTs) under high pressure in a diamond anvil cell is performed with the focus on the effect of the contact sliding between sample and anvils. Finite element software ABAQUS is utilized and a combination of Coulomb friction and plastic friction is considered. Results are obtained for PTs to weaker, equal-strength, and str...

متن کامل

Nanocrystalline hexagonal diamond formed from glassy carbon

Carbon exhibits a large number of allotropes and its phase behaviour is still subject to significant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014